Китайская теорема об остатках

- 1. Даны натуральное число c и последовательность (a_n) натуральных чисел, при всех $n \in \mathbb{N}$ удовлетворяющая двойному неравенству $a_n < a_{n+1} < a_n + c$. Докажите, что множество P простых чисел, не делящих ни один из членов последовательности (a_n) , конечно и найдите наибольшее возможное количество элементов P.
- 2. Найдите все натуральные числа n > 1, для которых найдутся натуральные числа b_1, b_2, \ldots, b_n (некоторые из них могут быть равны между собой, но не все) такие, что при всех $k \in \mathbb{N}$ произведение $(b_1 + k)(b_2 + k) \ldots (b_n + k)$ является степенью натурального числа. (Основание и показатель степени зависят от k и превышают 1.)
- 3. Докажите, что для каждого свободного от квадратов числа n>1 существует простой делитель $p\mid n$ и натуральное число m такие, что $n\mid p^2+p\cdot m^p$.
- 4. Значения многочлена $P \in \mathbb{Z}[n]$ при всех $n \in \mathbb{N}$ кратны хотя бы одному из чисел множества $\{a_1, \ldots, a_m\}$. Докажите, что найдётся номер i такой, что $P(n) \vdots a_i$ при всех $n \in \mathbb{N}$.
- 5. Докажите, что для любых взаимно простых чисел $a,c\in\mathbb{N}$ существует число $b\in\mathbb{N}$ такое, что $b^{b^{b\cdots b}}-a\vdots c$.
- 6. Существует ли последовательность $(a_n) \subset \mathbb{N}$, в которой каждое натуральное число встречается ровно один раз и $d(na_{n+1}^n + (n+1)a_n^{n+1}) : n$ для каждого $n \in \mathbb{N}$?
- 7. Выясните, существуют ли попарно раличные натуральные числа $a_1, a_2, \ldots, a_{101}, b_1, b_2, \ldots, b_{101}$ такие, что для каждого непустого подмножества $S \subset \{1, 2, \ldots, 101\}$ сумма $\sum_{i \in S} a_i$ делит число $100! + \sum_{i \in S} b_i$.