1 Полезные леммы/теоремы

- 1. (Теорема Микеля) Пусть ABC треугольник с произвольными точками A_0 , B_0 и C_0 на сторонах BC, CA и AB соответственно (или их продолжениях). Тогда описанные окружности ΔAB_0C_0 , ΔA_0BC_0 и ΔA_0B_0C пересекаются в одной точке.
- 2. (Теорема о бабочке) Пусть M середина хорды PQ окружности ω , через которую проведены две другие хорды AB и CD. Пусть $AD \cap PQ = X$ и $BC \cap PQ = Y$. Тогда M также является серединой XY.
- 3. (Задача №255) Пусть M и N точки касания вписанной окружности со сторонами BC и BA треугольника ABC, K точка пересечения биссектрисы угла A с прямой MN. Тогда $\angle AKC = 90^\circ$, и середины сторон AB, AC и точка K лежат на одной прямой. (что будет для вневписанной окружности?)
- 4. (Shooting lemma) Пусть M середина дуги AB окружности ω . X произвольная точка окружности. $K = MX \cap AB$. Тогда $MA^2 = MX \cdot MK = MB^2$. (что будет, если взять ещё точку Y на окружности?)
- 5. (Лемма о трезубце) Пусть I и I_A центры вписанной и вневписанной (касающейся стороны BC и продолжений сторон AB и AC) окружностей треугольника ABC соответственно. Тогда точки B, C, I, I_A лежат на одной окружности с центром в середине «меньшей» дуги BC описанной окружности треугольника ABC. (очевидно есть ещё одна такая "хорошая" окружность)
- 6. (по name) Пусть вписанная окружность треугольника ABC касается стороны BC в точке D, и пусть DT диаметр этой окружности. Если прямая AT пересекает BC в точке X, то BD = CX.

2 Задачи

- 1. Пусть ABC остроугольный треугольник с $AB \neq AC$. Окружность с диаметром BC пересекает стороны AB и AC в точках M и N соответственно. Обозначим через O середину стороны BC. Биссектрисы углов $\angle BAC$ и $\angle MON$ пересекаются в точке R. Докажите, что описанные окружности треугольников BMR и CNR имеют общую точку, лежащую на стороне BC.
- 2. Пусть I и O центр вписанной и описанной окружностей треугольника ABC соответственно, а s_a внешняя биссектриса угла $\angle BAC$. Прямая, проходящая через I и перпендикулярная IO, пересекает прямые BC и s_a в точках P и Q соответственно. Докажите, что IQ = 2IP.
- 3. Окружность ω с центром О касается окружности Ω и хорды AB этой окружности. M середина дуги AB. C и D такие точки на AB, что $MC \perp AO$ и $MD \perp OB$. Докажите, что $AB = 2 \cdot CD$.
- 4. Пусть ABC остроугольный треугольник с ортоцентром H, и пусть W точка на стороне BC, лежащая строго между B и C. Точки M и N являются основаниями высот из B и C соответственно. Обозначим через ω_1 описанную окружность BWN, и пусть X точку на ω_1 такую, что WX диаметр ω_1 . Аналогично, обозначим через ω_2 описанную окружность треугольника CWM, и пусть Y точку, такую, что WY диаметр ω_2 . Докажите, что X, Y и H лежат на одной прямой.
- 5. Пусть O центр описанной окружности, а H ортоцентр остроугольного треугольника ABC, причем BC > CA. Пусть F основание высоты CH треугольника ABC. Перпендикуляр к прямой OF в точке F пересекает прямую AC в точке P. Докажите, что $\angle FHP = \angle BAC$.
- 6. Дан треугольник ABC, удовлетворяющий условию $AC + BC = 3 \cdot AB$. Вписанная окружность треугольника ABC имеет центр I и касается сторон BC и CA в точках D и E соответственно. Пусть K и L симметричные D и E относительно I. Докажите, что точки A, B, K, L лежат на одной окружности.

- 7. Пусть ABC треугольник с инцентром I и центром вневписанной окружности I_A . Пусть M середина дуги BC, не содержащей A, и пусть N середина дуги MBA. Прямые NI и NI_A пересекают описанную окружность ABC в точках S и T. Докажите, что прямые ST, BC и AI пересекаются в одной точке.
- 8. Дан треугольник ABC с ортоцентром H. Проведены высоты AA_1 и CC_1 . На AC нашлась такая точка L, что отрезки A_1L и C_1L делятся высотами пополам. Докажите, что $HL \perp OH$.
- 9. Точки H и I ортоцентр и центр вписанной окружности остроугольного треугольника ABC. Пусть D проекция точки I на прямую BC, а точка E симметрична точке A относительно точки I. Далее, пусть F проекция точки H на прямую ED. Докажите, что точки B, H, F и C лежат на одной окружности.
- 10. Пусть ABC неравнобедренный треугольник с центром вписанной окружности I, вписанная окружность которого касается \overline{BC} , \overline{CA} , \overline{AB} в точках D, E, F соответственно. Обозначим через M середину \overline{BC} . Пусть Q точка на вписанной окружности такая, что $\angle AQD = 90^\circ$. Пусть P точка внутри треугольника на прямой AI, для которой MD = MP. Докажите, что либо $\angle PQE = 90^\circ$, либо $\angle PQF = 90^\circ$.
- 11. Пусть ABC треугольник с центром вписанной окружности I. Точка P внутри треугольника удовлетворяет условию

$$\angle PBA + \angle PCA = \angle PBC + \angle PCB$$
.

Покажите, что $AP \ge AI$, и что равенство выполняется тогда и только тогда, когда P = I.

- 12. Для треугольника ABC точка J является центром вневписанной окружности, противоположной вершине A. Эта вневписанная окружность касается стороны BC в точке M, а прямых AB и AC в точках K и L соответственно. Прямые LM и BJ пересекаются в точке F, а прямые KM и CJ пересекаются в точке G. Пусть S точка пересечения прямых AF и BC, а T точка пересечения прямых AG и BC. Докажите, что M середина ST.
- 13. Для вписанного четырехугольника ABCD обозначим через $L,\ M$ центры вписанных окружностей треугольников $ABC,\ BCD$ соответственно. Пусть R точка пересечения перпендикуляров из точек $L,\ M$ на диагонали AC и BD соответственно. Докажите, что ΔLMR равнобедренный.
- 14. Для данного треугольника ABC пусть X переменная точка на прямой BC такая, что C лежит между B и X, а вписанные окружности треугольников ABX и ACX пересекаются в двух различных точках P и Q. Докажите, что прямая PQ проходит через точку, не зависящую от выбора точки X.
- 15. Треугольник ABC вписан в окружность ω . Окружность с хордой BC пересекает отрезки AB и AC снова в точках S и R соответственно. Отрезки BR и CS пересекаются в точке L, а лучи LR и LS пересекают ω в точках D и E соответственно. Биссектриса внутреннего угла $\angle BDE$ пересекает прямую ER в точке K. Докажите, что если BE = BR, то $\angle ELK = \frac{1}{2} \angle BCD$.
- 16. Пусть вписанная окружность ω треугольника ΔABC касается сторон AC и AB в точках E и F соответственно. Точки X, Y окружности ω таковы, что $\angle BXC = \angle BYC = 90^\circ$. Докажите, что EF и XY пересекаются на средней линии треугольника ABC.
- 17. Пусть ABC треугольник с центром вписанной окружности I, а D произвольная точка на стороне BC. Пусть прямая, проходящая через D и перпендикулярная BI, пересекает CI в точке E. Пусть прямая, проходящая через D и перпендикулярная CI, пересекает BI в точке F. Докажите, что точка, симметричная A относительно прямой EF, лежит на прямой BC.