ММИ в алгебраических задачах

- 1. Для произвольного натурального n докажите, что
- a) $1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{n+1}$
- **b)** $1 \times 1! + 2 \times 2! + \ldots + n \times n! = (n+1)! 1.$
- **2.** Пусть $n \in \mathbb{N}$. Найдите формулы для сумм: **a)** $1+3+\ldots+(2n-1);$ **b)** $\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{n-1}{n!}.$
- 3. Пусть $x_1 = 2$ и $x_{n+1} = 3x_n + 2$. Найдите формулу для элементов последовательности $(x_n)_{n\in\mathbb{N}}$.
- 4. Докажите, что $\sqrt{6+\ldots+\sqrt{6+\sqrt{6}}} < 3$, где в левой части неравенства записано 100 шестёрок.
- **5.** Докажите, что $3^n > n^3$ при всех целых n > 4.
- 6. Докажите, что при любом $n \in \mathbb{N}$ верно неравенство $\frac{1 \times 3 \times 5 \times \ldots \times (2n-1)}{2 \times 4 \times 6 \times \ldots \times 2n} \le \frac{1}{\sqrt{2n+1}}.$
- 7. Числа $x_1, x_2, ..., x_n \ge -1$ одного знака. Докажите, что $(1+x_1)(1+x_2)\dots(1+x_n) \ge 1+x_1+x_2+\dots+x_n$.
- 8. Для любого натурального n докажите, что

$$\frac{1}{1} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1.$$

- **9.** Известно, что x+1/x целое число. Докажите, что $x^n + 1/x^n$ также является целым при любом $n \in \mathbb{N}$.
- **10.** Докажите, что для любых целых чисел $x_1, x_2, \ldots,$ x_n произведение $(1+x_1^2)(1+x_2^2)\dots(1+x_n^2)$ представимо в виде суммы квадратов двух целых чисел.
- 11. Рассмотрим все возможные наборы чисел из множества $\{1, 2, \ldots, n\}$, не содержащие двух соседних чисел. Докажите, что сумма квадратов произведений чисел в этих наборах равна (n+1)! - 1.